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Instability of a Large Coupled Microbeam
Array Initialized at Its Two Ends

J. Zhu
C. Q. Ru
A. Mioduchowski
Department of Mechanical Engineering, University of Alberta,
Edmonton, Canada

A simple approximate method is suggested to determine the critical value for
instability of a large parallel array of mutually attracting microbeams, based on
instability analysis of a small array of only a few microbeams at the ends of the
original large array. First, it is verified by a simplified spring system that equilib-
rium deflections of all intermediate microbeams (except those at the two ends of the
parallel array) are negligibly small, and instability of the large microbeam array
is initialized at the two ends of the array. Therefore, the critical value for insta-
bility of the original large array is determined by the critical value for instability
of a small array of only a few microbeams at the two ends with its innermost
microbeam fixed. The results obtained for the spring system show that the relative
errors in the critical value between the original large array and the substitute
small array are less than 2% when only three or four springs at each end are con-
sidered. In particular, the relative errors quickly converge to zero when the number
of springs considered in the substitute small array further increases. This simple
substitution method is used to approximately determine the critical value for
instability of a large array of mutually attracting microbeams, and the results
are compared with those obtained by other methods based on the instability
analysis of the original large array, which contains a large number of microbeams.
The present work offers a simple method to reduce the instability analysis of a
large array of microbeams to a much simpler problem of a small array of only a
few microbeams.
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1. INTRODUCTION

Typical microbeams in current microelectrical mechanical systems
(MEMS) range from 0.1 to a few mm in thickness, with lateral dimen-
sions of 10–500 mm and gaps between adjacent microbeams of around
1mm [1]. Owing to drastic increase of surface area and decrease in
thickness and gap, surface attractive forces, such as van der Waals
force, electrostatic force, capillary force, and Casimir force [1–8],
which are usually negligible in conventional structures at the macro-
scale, play a dominant role in mechanical deformation of microbeams
and could lead to the unwanted jump-together instability of adjacent
microbeams. Therefore, surface-force-driven structural instability
and adhesion of microbeams have become a research topic of central
importance in MEMS.

Parallel arrays of microbeams are commonly adopted in many
designs of MEMS, especially in the comb-drive technology [9–13].
Exact structural instability analysis of such large arrays of mutually
attracting microbeams raises a challenging nonlinear problem,
especially when the number of parallel microbeams is large. This
could explain why little effort has been made in the literature to
study structural instability of a large array of mutually attracting
microbeams. Very recently, we have developed a method for instability
of a large parallel array of mutually attracting microbeams, based
on the concept of the end effect on instability [14,15]. However,
the method suggested in Refs. 14 and 15 is based on a simplified
analysis of the original large microbeam array, which contains a large
number of microbeams, and still suffers some technical complexity
when the number of microbeams is extremely large. Therefore, it is
of practical interest to develop an even easier method for the same
problem.

In the present work, a simpler method is proposed to study insta-
bility of a large array of mutually attracting microbeams. This method
is based on an observation, shown by our previous works [14,15],
that equilibrium deflections of all intermediate beams (except those
at the two ends of the large array) are negligibly small because two
interactions from two adjacent beams on the opposite sides are almost
equal but opposite and thus cancel each other. This implies that struc-
tural instability of the original large microbeam array is initialized at
its two ends. Thus, it is anticipated that structural instability of the
original large array of microbeams will be determined by structural
instability of a small array of only a few outermost microbeams at each
of the two ends. In this article, this idea is explored to develop a simple
substitution method based on instability analysis of a small array of
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only a few microbeams. In Section 2, surface-force-driven instability of
a large microbeam array is formulated. The effectiveness of the
simple substitution method is examined in Section 3 for the spring
system. In Sections 4 and 5, instability of a large array of identical
microbeams or opposing microcantilevers is analyzed using this
substitution method, with comparison to the results obtained in
the previous works [14,15]. Finally, all results are summarized in
Section 6.

2. FORMULATION OF INSTABILITY OF A LARGE
ARRAY OF MICROBEAMS

Let us consider N microbeams, each of which attracts with two neigh-
boring ones through surface forces, as shown in Figure 1. The cases
considered include a large parallel array of identical microbeams of
the bending rigidity EI and length L shown in Figure 1a–c or comb-
drive microcantilevers consisting of two opposing parallel arrays of
microcantilevers shown in Figure 1d where all cantilevers on the left
side, with the bending rigidity E1I1 and length L1, are labeled by
odd subscripts (1, 3, 5,. . .) and defined by the axial coordinate x1,
and all cantilevers on the right side, with the bending rigidity E2I2

and length L2, are labeled by even subscripts (2, 4, 6,. . .) and defined
by the axial coordinate x2, d is the overlap depth of the opposing micro-
cantilevers as shown in Figure 1.

As described in the existing literature [1–8], the attractive force per
unit area between two surfaces of any two adjacent microbeams at any
point can be given by F ¼ c=dn, where c is a constant depending on the
nature of the interacting force and the materials, d is the distance
between the two surfaces at that point, and the index n can be 2 (such
as electrostatic force), 3 (such as unretarded van der Waals force), or 4
(such as Casimir force or retarded van der Waals force). Thus, the
interacting force per unit axial length between any two adjacent
beams is given by f ¼ Fb ¼ C=dn, where C ¼ cb and b is the width of
the interacting area of two adjacent microbeams as shown in Figure 1.
In the present article, we consider only the case in which one type of
the surface forces is dominant over the others, and thus n ¼ 2, 3, or
4. In other words, combined effects of more than one type of the
surface forces will not be examined in the present article. In addition,
the distance between the microbeams and other possible surrounding
materials is assumed to be so large that the associated interaction
forces are negligible as compared with the beam–beam interaction.
Here, the width b and the length L are assumed to be much larger
than the gap d so that the nonuniform interaction effect (such as
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fringing field; see p. 1068 in [16] is negligible, and then the large
parallel plate model for uniform interaction described previously
works well for the beam–beam interaction studied here.

Assume that YkðxÞ be the equilibrium deflection of beam
k (k ¼ 1, 2,. . ., N) defined downward positive. For a parallel array of

FIGURE 1 Large array of mutually attracting microbeams: a) hinged, b)
clamped, c) cantilever, and d) comb-drive.
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identical microbeams shown in Figure 1a–c, we have

EI
d4Yk

dx4
¼ Pk ð1Þ

where Pk is the resultant force per unit axial length acting on beam k
due to the interactions with two adjacent beams (k� 1) and (kþ 1)
given by

Pk ¼
�C

ðd0 þ Yk � Yk�1Þn
þ C

ðd0 þ Ykþ1 � YkÞn
ð2Þ

where Pk is defined positive along the deflection direction and d0 is the
initial separation between the two flat surfaces of any two adjacent
beams.

For comb-drive microcantilevers (see Figure 1d), we have

E1I1
d4Ykðx1Þ

dx4
1

¼ Pk; for k ¼ 1; 3; 5; . . . ð3Þ

E2I2
d4Ykðx2Þ

dx4
1

¼ Pk; for k ¼ 2;4; 6; . . . ; ð4Þ

where Pk is the resultant force per unit axial length acting on cantile-
ver k due to the interactions with two adjacent cantilevers (k� 1) and
(kþ 1), which vanishes outside the overlap domain and is given by

Pk ¼
�C

ðd0 þ Yk � Yk�1Þn
þ C

ðd0 þ Ykþ1 � YkÞn
for L1 � d � x1 � L1 or

L2 � d � x2 � L2 ð5Þ

within the overlap domain.
Structural instability of N mutually interacting beams can be

studied by the equilibrium method [17,18]. The instability of the beam
array is defined by a critical value of the beam–beam interaction
beyond which some adjacent microbeams jump together (called
‘‘adhesion’’) so that the distance reduction between them is larger than
the initial separation d0. Therefore, instability analysis of the large
microbeam array requires studying the dependence of the equilibrium
deflections of the microbeams, YkðxÞ (k ¼ 1, 2,. . ., N), on the beam–
beam interaction, which raises a challenging nonlinear problem
especially when the number (N) of the microbeams is large.
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As shown by our previous works [14,15], equilibrium deflections of
all intermediate beams could be negligibly small because two interac-
tions from two adjacent beams on the opposite sides are almost equal
but opposite and thus cancel each other. This means that structural
instability of a large array of microbeams will be initialized at the
ends of the large array and characterized by collision of adjacent
microbeams at its two ends. Therefore, it is expected that instability
of the original large array can be determined by instability of a small
array of only a few (3, 4, or more) microbeams at each of the two ends
with the innermost microbeam fixed. Based on this idea, the critical
value of interaction coefficient for instability of the original large array
can be well estimated by the critical value of interaction coefficient for
instability of the substitute small array. In the next section, this idea
is explored to study instability of the N-spring system.

3. INSTABILITY OF A SIMPLE SPRING SYSTEM

To illustrate the present substitution method, let us first consider N
equally spaced and mutually attracting springs, arranged along a
straight line, from k ¼ 1 (left end) to k ¼ N (right end), as shown in
Figure 2. For this spring system to represent not only the cases
Figure 1a–c but also the case Figure 1d, we assume that all springs
of odd index (k ¼ 1, 3, 5,. . .) have the spring constant q1, whereas all
springs of even index (k ¼ 2, 4, 6,. . .) have the spring constant q2,
and any two adjacent springs are attracted to each other through
the force f ¼M=dn, where M is a constant and d is the distance
between the two springs.

Under the spring–spring interaction forces, all springs will displace
from their original neutral positions. We assume the displacement of
the kth spring to be Yk (defined right positive in Figure 2), thus equi-
librium of the N mutually attracting springs are governed by N dimen-
sionless nonlinear equations for N unknowns Yk=d0(k ¼ 1, 2,. . ., N)
given by

�Y1

d0
þ B

ð1þ ðY2=d0Þ � ðY1=d0ÞÞn
¼ 0; k ¼ 1; ð6aÞ

FIGURE 2 Spring system consisting of alternating array of springs of spring
constant q1 and springs of spring constant q2.
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�Yk

d0
þ bB

ð1þ ðYkþ1=d0Þ � ðYk=d0ÞÞn
� bB

ð1þ ðYk=d0Þ � ðYk�1=d0ÞÞn
¼ 0;

k ¼ 2; 4; . . .

ð6bÞ

�Yk

d0
þ B

ð1þ ðYkþ1=d0Þ � ðYk=d0ÞÞn
� B

ð1þ ðYk=d0Þ � ðYk�1=d0ÞÞn
¼ 0;

k ¼ 3; 5; . . .

ð6cÞ

�YN

d0
� B

ð1þ ðYN=d0Þ � ðYN�1=d0ÞÞn
¼ 0; k ¼ N is an odd number;

ð6dÞ

�YN

d0
� bB

ð1þ ðYN=d0Þ � ðYN�1=d0ÞÞn
¼ 0; k ¼ N is an even number;

ð6eÞ

where the two constants B and b are defined by

B ¼ M

q1dnþ1
0

; b ¼ q1

q2
: ð7Þ

In particular, for a given ratio b, the constant B is the interaction
coefficient defined on the initial distance d0 between any two adjacent
springs, which represents the intensity of the interaction between
neighboring springs. It should be noted that Equation (6b) is identical
to (6c) and Equation (6d) is identical to (6e) when b ¼ 1.

Equilibrium displacements of all springs governed by Equation (6)
can be obtained by the Newton iteration method. Equilibrium displa-
cements of the springs suffer discontinuity when the loading para-
meter B reaches a certain critical value. For B smaller than the
critical value, equilibrium displacements vary smoothly with the para-
meter B. When the loading parameter B exceeds the critical value,
equilibrium displacements of the springs obtained from Equation (6)
suffer a jump and lead to collision of some adjacent springs because
the distance reduction between them is larger than the initial gap
d0. The exact critical values of B for instability and the equilibrium
displacement of the end springs and their neighboring springs at the
onset of instability for b ¼ 0.2, 1, and 5 and n ¼ 2, 3, and 4 are shown
in Table 1. For example, when n ¼ 2, for b ¼ q1=q2 ¼ 0.2 or 1, our
numerical results show that equilibrium positions of the spring system
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are stable when the loading parameter B given by Equation (7) is less
than the critical value 1=7.543 for b ¼ 0.2 or 1=11 for b ¼ 1, regardless
of N as an even or odd number. On the other hand, for q1=q2 ¼ 5, equi-
librium positions of the spring system are stable when the loading
parameter B is less than 1=37.713 when N is an even number or when
B is less than 1=28.1 when N is an odd number. Here a significant
difference exists between the critical value with an even number N
and the critical value with an odd number N when q1=q2 ¼ 5, because
the rigidity of the springs of odd indexes (1, 3,. . .) is much larger than
the rigidity of the springs of even indexes (2, 4,. . .), and therefore the
spring system has a lower critical value of B for instability when N is
an even number. Obviously, when N is an odd number, both the left
and the right end springs (k ¼ 1 and k ¼ N) have the same much
larger rigidity, and then the critical value of B for instability is much
higher. In particular, no such a difference exists for even or odd
number N when b ¼ 0.2 because the left end spring k ¼ 1 always
has the smaller rigidity, which determines the instability of the spring
system, regardless of N as an even or odd number.

Equilibrium displacements of the spring system prior to instability
are shown in Figure 3 for a few examples. It is seen from Figure 3 that

TABLE 1 Critical Values of B for Instability and the Equilibrium Displace-
ment Change between the End Spring and Its Neighbor at the Onset of
Instability for b ¼ 0.2, 1, and 5 and n ¼ 2, 3, and 4

b n N
Exact critical

value of B ðY1 � Y2Þ=d0 ðYN�1 � YNÞ=d0

0.2 2 20 1=7.543 0.3115 0.0482
21 1=7.543 0.3115 0.3115

3 20 1=10.651 0.2333 0.0367
21 1=10.651 0.2333 0.2333

4 20 1=13.753 0.1869 0.0297
21 1=13.753 0.1869 0.1869

1 2 20 1=11 0.2439 0.2439
21 1=11 0.2439 0.2439

3 20 1=15.8 0.1781 0.1781
21 1=15.8 0.1781 0.1781

4 20 1=20.6 0.1398 0.1398
21 1=20.6 0.1398 0.1398

5 2 20 1=37.713 0.0482 0.3134
21 1=28.1 0.1705 0.1705

3 20 1=53.254 0.0367 0.2339
21 1=41.3 0.1221 0.1221

4 20 1=68.765 0.0297 0.1869
21 1=54.4 0.1050 0.1050
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when the loading parameter B is less than the critical value, as
expected, accurate equilibrium displacements of almost all intermedi-
ate springs are negligibly small. Actually, in all cases shown, the dis-
placement of the spring k ¼ 3 at the left end (or the spring k ¼ N� 2 at
the right end) prior to the onset of instability is negligibly small
(around 0.02d0 or less), compared with the much larger displacements
of the end springs (k ¼ 1 and k ¼ N) and their neighboring springs
(k ¼ 2 or k ¼ N� 1). For instance, for n ¼ 2, B ¼ 1=7.6, b ¼ 0.2, and
N ¼ 20, the displacement of the third spring is 0.014d0, and the displa-
cements of the fourth and fifth springs are �0.0009d0 and 0.0005d0,
respectively. For n ¼ 3, B ¼ 1=15.9, b ¼ 1, and N ¼ 20 or 21, the

FIGURE 3 Equilibrium displacements of N mutually attracting springs
governed by Equation (6) when N ¼ 20 or 21 prior to instability, where
b ¼ q1=q2, and the loading parameter B is defined by Equation (7) based on
the initial uniform separation d0: a) b ¼ 0.2, B ¼ 1=8, and n ¼ 2; b) b ¼ 1,
B ¼ 1=16, and n ¼ 3; c) b ¼ 5, B ¼ 1=69, N ¼ 20, and n ¼ 4; d) b ¼ 5, B ¼ 1=55,
N ¼ 21, and n ¼ 4.
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displacement of the third spring is 0.017d0, and the displacements of
the fourth and fifth springs are �0.0060d0 and 0.0020d0, respectively.
For n ¼ 4, B ¼ 1=54.5, b ¼ 5, and N ¼ 21, the displacement of the third
spring is 0.0057d0, and the displacements of the fourth and fifth
springs are �0.0096d0 and 0.0009d0, respectively.

Based on the fact that equilibrium deflections of all intermediate
springs (except those at the ends) are negligibly small, it is anticipated
that structural instability of the original large spring array is determ-
ined by structural instability of only a few outermost springs (say
N� springs with N� << N) at each of the two ends of the large array
in which the deflection of the innermost spring k ¼ N� (left end) or
K ¼ ðN �N� þ 1Þ (right end) can be assumed to be zero. Therefore,
in doing so, the critical value for structural instability of the original
large array (a much more complicated problem) can be reduced to
determining the critical value for structural instability of a small
array of only a few springs at the two ends (a much simpler problem).

It should be stated that which of the two ends determines instability
of the original large array depends on the parameters b and N. If N is
an even number, for b < 1, the deflection of the spring k ¼ 1 is bigger
than that of the spring k ¼ N because of the smaller rigidity of the
spring k ¼ 1. Thus, instability of the large array will be initialized
on the left end, and then instability of the original large array depends
on structural behavior of a few (N�) springs at the left end with the
innermost spring k ¼ N� fixed. On the other hand, for b > 1, because
the rigidity of the spring k ¼ N is smaller than that of the spring
k ¼ 1, instability of the original large array depends on structural
behavior of a few (N�) springs at the right end with the innermost
spring K ¼ ðN �N� þ 1Þ fixed. When b ¼ 1, all springs are identical,
and the spring system is symmetric about the two ends. Thus, struc-
tural instability of the array can be determined by a few springs on
either of the two ends. Finally, if N is an odd number, because the
spring system is symmetric about the two ends, regardless of whether
b is greater than, equal to, or less than 1, structural instability of the
large array can be determined by the behavior of a few springs on
either of the two ends.

In what follows, let us consider structural instability of N� springs
at the left end with the innermost spring k ¼ N� fixed. The critical
interaction coefficients for instability of this small array of N� springs
for b ¼ 0.2, 1, or 5 will be compared with the exact critical value for
instability of the original large array for b ¼ 0.2 (N is an even or odd
number), 1 (N is an even or odd number), or 5 (N is an odd number),
obtained with the Newton iteration method shown in Table 1. For
the case in which b ¼ 5 and N is an even number, we should consider
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structural instability of N� springs at the right end with the innermost
spring K ¼ ðN �N� þ 1Þ fixed. However, this case (with b ¼ 5 and N is
an even number) is equivalent to the case in which b ¼ 1=5 ¼ 0.2 (with
an even number N) if we define the right end spring as the first (k ¼ 1)
and the left end as the last (k ¼ N). Therefore, structural instability
for the case b ¼ 0.2 is equivalent to structural instability of the case
b ¼ 5 when N is an even number. Thus, without loss of the generality,
we focus on the instability of N� springs at the left end of the original
large array, for b ¼ 0.2, 1, or 5, respectively.

3.1. Estimate of the Critical Value with Y2 ¼ 0 (N� ¼ 2)

As the simplest approximation, let us first consider only two springs
(N� ¼ 2) at the left end, with the inner spring k ¼ N� ¼ 2 fixed (that
is Y2 ¼ 0). Based on Equation (6a) with Y2 ¼ 0, the deflection of the
left end spring is determined by

�Y1

d0
þ B

ð1� ðY1=d0ÞÞn
¼ 0: ð8Þ

The critical value for instability of the small array of only two
springs governed by Equation (8) is 1=6.75 for n ¼ 2, 1=9.482 for
n ¼ 3, or 1=12.208 for n ¼ 4. In addition, the distance change
between the end spring and its neighbor at the onset of instability
is 0.3333d0 for n ¼ 2, 0.2477d0 for n ¼ 3, or 0.1978d0 for n ¼ 4. On
the other hand, the exact critical value for instability of the original
large array, obtained by the Newton iteration method, is shown in
Table 1. Thus, the average relative error in the critical value for
instability is 130% for n ¼ 2, or 138% for n ¼ 3, or 142% for n ¼ 4.
In addition, the average relative error in the distance change
between the end spring and its neighbor at the onset of instability
is 46% for n ¼ 2, or 49% for n ¼ 3, or 45% for n ¼ 4. Therefore,
for the original large array, considering only two springs at its left
end will lead to unacceptably large errors in the critical value for
instability and the distance change between the end spring and its
neighbor at the onset of instability.

3.2. Estimate of the Critical Value with Y3 ¼ 0 (N� ¼ 3)

Next, let us consider three springs at the left end of the large array,
with the innermost spring k ¼ N� ¼ 3 fixed (that is, Y3 ¼ 0). It follows
from Equation (9) that the deflections of the left end spring and the
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second spring are determined by

�Y1

d0
þ B

ð1þ ðY2=d0Þ � ðY1=d0ÞÞn
¼ 0 ð9aÞ

�Y2

d0
þ bB

ð1� ðY2=d0ÞÞn
� bB

ð1þ ðY2=d0Þ � ðY1=d0ÞÞn
¼ 0: ð9bÞ

The critical values for instability of the small array of three springs
governed by Equation (9) for b ¼ 0.2, 1, or 5 and n ¼ 2, 3, or 4, as well
as the corresponding distance changes between the end spring and its
neighbor at the onset of instability, are shown in Table 2. It is seen
from Table 2 that considering the small array of only three springs
at the left end of the large array offers an effective simple method to
estimate the critical value for instability of the original large array,
with relative errors of less than 2%. In addition, the average relative
error in the distance change between the end spring and its neighbor
at the onset of instability is 2.8% for n ¼ 2, 5.5% for n ¼ 3, or 4.7% for
n ¼ 4. Hence, considering only three springs at the end has already led
to useful approximate results with small relative errors.

3.3. Estimate of the Critical Value with Y4 ¼ 0 (N� ¼ 4)

Further, let us consider N� ¼ 4 springs at the left end of the large
array with Y4 ¼ 0. It follows from Equation (10) that the deflections

TABLE 2 Critical Values of B for Instability and the Distance Change
between the End Spring and Its Neighbor at the Onset of Instability for
b ¼ 0.2, 1, and 5 and n ¼ 2, 3, and 4 when N� (¼3) Springs at the Left
End of the Original Array are Considered and the Displacement of the
Third Spring is Assumed to be Zero (YN� ¼ 0)

b n Critical value of B

Relative
error of B

(%) ðY1 � Y2Þ=d0

Relative error of
ðY1 � Y2Þ=d0

(%)

0.2 2 1=7.523 0.266 0.3109 0.193
3 1=10.613 0.358 0.2186 6.301
4 1=13.701 0.380 0.1856 0.696

1 2 1=10.9 0.917 0.2312 5.207
3 1=15.5 1.936 0.1870 4.997
4 1=20.2 1.980 0.1432 2.432

5 2 1=27.6 1.812 0.1655 2.933
3 1=40.7 1.474 0.1159 5.078
4 1=53.6 1.493 0.0935 10.952
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of the first, second, and third springs are determined by

�Y1

d0
þ B

ð1þ ðY2=d0Þ � ðY1=d0ÞÞn
¼ 0 ð10aÞ

�Y2

d0
þ bB

ð1þ ðY3=d0Þ � ðY2=d0ÞÞn
� bB

ð1þ ðY2=d0Þ � ðY1=d0ÞÞn
¼ 0 ð10bÞ

�Y3

d0
þ B

ð1� ðY3=d0ÞÞn
� B

ð1þ ðY3=d0Þ � ðY2=d0ÞÞn
¼ 0 ð10cÞ

Similarly, the critical values for instability and the distance changes
between the end spring and its neighbor at the onset of instability
for b ¼ 0.2, 1, or 5 and n ¼ 2, 3, or 4 are shown in Table 3. It is seen
from Table 3 that the small array of four springs at the left end of
the large array offers an almost accurate critical value for instability
of the original large array, with relative errors of less than 0.5%.
The average relative error in the distance change between the end
spring and its neighbor at the onset of instability is 2.5% for n ¼ 2,
1.1% for n ¼ 3, or 3.5% for n ¼ 4.

3.4. Accuracy of the Simple Method for the Spring System

Further numerical results are obtained for larger N� (omitted here).
The results show that the difference between the critical value for

TABLE 3 Critical Values of B for Instability and the Distance Change bet-
ween the End Spring and Its Neighbor at the Onset of Instability for b ¼ 0.2, 1,
and 5 and n ¼ 2, 3, and 4 when N� ( ¼ 4) Springs at the Left End of the
Original Array are Considered and the Displacement of the Fourth Spring is
Assumed to be Zero (YN� ¼ 0)

b n Critical value of B

Relative
error of B

(%) ðY1 � Y2Þ=d0

Relative error of
ðY1 � Y2Þ=d0

(%)

0.2 2 1=7.542 0.013 0.3127 0.385
3 1=10.650 0.009 0.2322 0.472
4 1=13.751 0.015 0.1858 0.589

1 2 1=11 0 0.2398 1.681
3 1=15.8 0 0.1742 2.190
4 1=20.5 0.488 0.1460 4.435

5 2 1=28.1 0 0.1612 5.455
3 1=41.2 0.243 0.1230 0.737
4 1=54.3 0.184 0.0992 5.524
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N� ¼ 5 and the critical value for N� ¼ 4 is always less than 0.5% for
b ¼ 0.2, 1, or 5, and n ¼ 2, 3, or 4. The estimated critical values of B
for N� ¼ 2, 3, 4, or 5 are shown in Figure 4. It is seen from Figure 4 that
the relative errors quickly converge to zero when the number N� of
springs considered in the substitute small array increases beyond
N� ¼ 5. For example, when N� ¼ 5, the relative error in the critical
value of interaction coefficient obtained by this substitution method
is less than 0.1% for b ¼ 0.2, 1, or 5, and n ¼ 2, 3, or 4. In addition, this
simple substitution method is also good in predicting the distance
change between the end spring and its neighbor at the onset of insta-
bility, with relative errors around 5% (for N� ¼ 5). When b > 1 and
N is an even number, similarly, we can consider a few (N�) springs at
the right end with the innermost spring K ¼ ðN �N� þ 1Þ fixed in
order to predict the structural instability of the original large array.

In conclusion, for a simplified spring system, the substitution
method suggested here can be used to determine approximately the
critical value for instability of the large array, based on an analysis
of a substitute small array of only a few springs at its two ends.
Clearly, such a substitution method largely simplifies the instability
analysis of the original large array of interacting springs.

FIGURE 4 Critical values of B for instability of the small array of N� springs
at the left end of the original large spring array when b ¼ 0.2, 1, or 5, and
n ¼ 2, 3, or 4, where the displacement of the N�th spring is assumed to be zero
(YN� ¼ 0).
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4. INSTABILITY OF A PARALLEL ARRAY OF IDENTICAL
MICROBEAMS

The results obtained for the spring system show that the proposed
substitution method can provide reasonably accurate critical values
of the interaction coefficient for instability of a original large array
of interacting springs. In this section, this method is employed to
determine the critical values for instability of a large parallel array
of identical microbeams, as shown in Figure 1a–c.

4.1. Estimate of the Critical Value with Y2 ¼ 0 (N� ¼ 2)

First, let us consider two microbeams (N� ¼ 2) with the second
microbeam fixed (Y2 ¼ 0). Based on Equations (1) and (2) with
Y2 ¼ 0, the deflection of the end beam Y1ðxÞ is determined by

EI
d4Y1

dx4
¼ C

ðd0 � Y1Þn
: ð11Þ

Equation (11) can be solved numerically by the Galerkin method, and
the deflection Y1ðxÞ can be expressed by the first m fundamental
modes of the beam as

Y1ðxÞ ¼
Xm
i¼1

aiFiðxÞ: ð12Þ

For hinged beams (Figure 1a), the first m fundamental modes have the
simple form [17,18]

FiðxÞ ¼ sin
ipx

L

� �
: ð13Þ

For clamped beams (Figure 1b), the first m fundamental modes are
given by [17,18]

FiðxÞ ¼ sin bix� sinh bix� ciðcos bix� cosh bixÞ; ð14Þ

where b1L ¼ 4:730, b2L ¼ 7:853, b3L ¼ 10:996, b4L ¼ 14:137, b5L ¼
17:279,. . ., and

ci ¼
sin biL� sinh biL

cos biL� cosh biL
: ð15Þ

Equation (14) is also valid for cantilevers (Figure 1c), provided that
[17,18] b1L ¼ 1:875, b2L ¼ 4:694, b3L ¼ 7:855, b4L ¼ 10:996,
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b5L ¼ 14:137, . . . , and

ci ¼
sin biLþ sinh biL

cos biLþ cosh biL
: ð16Þ

Similar to previous papers [14,15], the interaction coefficient
is defined based on the initial separation d0 between adjacent
microbeams as

A0 ¼
nC

dnþ1
0

: ð17Þ

Multiplying Equation (11) by FiðxÞ (i ¼ 1, 2,. . ., m) and then integrating
over x ¼ [0, L], one will obtain m equations with m unknown coefficients
ai (i ¼ 1, 2,. . ., m). The critical value of A0 for instability of a large array
of microbeams is determined as the lowest interaction coefficient at
which the jump-together instability occurs. In what follows, we take
m ¼ 3 because the relative errors between m ¼ 3 and m ¼ 4 are already
much less than 1%.

Because parallel arrays of microbeams in MEMS, especially in
the comb-drive technology, are usually electrostatically controlled
[9–13], we focus on the power index n ¼ 2. For n ¼ 2, the present
method with N� ¼ 2 predicts that the critical value of A0=EIðp=LÞ4
for instability of the two microbeams is 0.283 for hinged beams,
1.449 for clamped beams, or 0.0345 for cantilevers. In addition, the
maximum deflection of the end beam at the onset of instability, pre-
dicted by the present method (N� ¼ 2), is 0.3854d0 for hinged beams,
or 0.3943d0 for clamped beams, or 0.4477d0 for cantilevers. On the
other hand, the critical value of A0=EIðp=LÞ4 for n ¼ 2 predicted by
the method suggested in Ref. 14, based on instability analysis of the
original large array of N microbeams, is 0.185 for hinged beams,
0.923 for clamped beams, or 0.0229 for cantilevers. Thus, the relative
error in the critical value of the interaction coefficient for instability is
53% for hinged beams, 57% for clamped beams, or 51% for cantile-
vers. Therefore, for the large array of identical microbeams, consider-
ing only two microbeams at the ends will lead to large relative errors
in the critical value of interaction coefficient for instability.

4.2. Estimate of the Critical Value with Y3 ¼ 0 (N� ¼ 3)

Let us further analyze instability of three microbeams (N� ¼ 3) at the
end of the original large array shown in Figure 1a–c, with the third
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microbeam fixed (Y3 ¼ 0). It follows from Equation (18) that the
deflections of the end beam and its neighbor are determined by

EI
d4Y1

dx4
¼ C

ðd0 þ Y2 � Y1Þn
; ð18aÞ

EI
d4Y2

dx4
¼ C

ðd0 � Y2Þn
þ �C

ðd0 þ Y2 � Y1Þn
: ð18bÞ

With the Galerkin method, Y1ðxÞ and Y2ðxÞ can be expressed as

Y1ðxÞ ¼
Xm
i¼1

aiFiðxÞ; Y2ðxÞ ¼
Xm
i¼1

biFiðxÞ: ð19Þ

Multiplying Equation (18) by FiðxÞ (i ¼ 1, 2, . . . , m) and then integrat-
ing over x ¼ [0, L], one obtains 2m equations with 2m unknown coeffi-
cients ai and bi (i ¼ 1, 2, . . . , m). Numerical results showed that when
n ¼ 2 and N� ¼ 3, the critical value of A0=EIðp=LÞ4 for instability of
the three microbeams predicted by the present method is 0.178 for
hinged beams, 0.915 for clamped beams, or 0.022 for cantilevers. In
addition, the maximum distance change between the first and second
beams at the onset of instability, predicted by the present method
(N� ¼ 3), is 0.2820d0 for hinged beams, 0.3122d0 for clamped beams,
or 0.3294d0 for cantilevers. Compared with the results given by the
previous method in Ref. 14, the relative error in the critical value of
the interaction coefficient for instability of the present method
(N� ¼ 3) is 3.8% for hinged beams, 0.9% for clamped beams, or
3.9% for cantilevers. Thus, considering only three microbeams
(N� ¼ 3) at the ends of the original large array can effectively estimate
the critical value for instability of the original large array with relative
errors of less than 4%.

4.3. Estimate of the Critical Value with Y4 ¼ 0 (N� ¼ 4)

Similarly, let us consider four microbeams (N�¼ 4) at one end of the
original array with the fourth microbeam fixed (Y4 ¼ 0). Thus, the
deflections of the first, second, and third beams are determined by

EI
d4Y1

dx4
¼ C

ðd0 þ Y2 � Y1Þn
; ð20aÞ

EI
d4Y2

dx4
¼ C

ðd0 þ Y3 � Y2Þn
þ �C

ðd0 þ Y2 � Y1Þn
; ð20bÞ

EI
d4Y3

dx4
¼ C

ðd0 � Y3Þn
þ �C

ðd0 þ Y3 � Y2Þn
: ð20cÞ
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Using the Galerkin method, it is shown that when n ¼ 2 and N� ¼ 4,
the critical value of A0=EIðp=LÞ4 for instability of the four microbeams
predicted by the present method is 0.176 for hinged beams, 0.904 for
clamped beams, or 0.0218 for cantilevers. In addition, the maximum
distance change between the first and second beams at the onset of
instability is 0.2829d0 for hinged beams, 0.3058d0 for clamped beams,
or 0.3358d0 for cantilevers. Thus, as compared with the results given
by the previous method in Ref. 14, the relative error in the critical
value of interaction coefficient for instability of the present method
(N� ¼ 4) is 4.9% for hinged beams, 2.1% for clamped beams, or
4.8% for cantilevers. The critical values for instability given by the
previous method in Ref. 14 are approximate in nature and cannot be
used as the exact critical values. This can explain why the relative
errors with N� ¼ 4 are even larger than the relative errors with
N� ¼ 3. In fact, it is expected that the results given by the present
substitution method quickly converge to the exact values when the
number N� increases.

The critical values, as a function of the number (N�) of microbeams
considered in the substitute small array,are shown in Figure 5, where

FIGURE 5 Critical value of the interaction coefficient for instability of a
small array of N� microbeams at the end of the original identical microbeam
array when n ¼ 2, where the N�th microbeam is assumed to be fixed
(YN� ¼ 0): a) hinged, b) clamped, c) cantilever.
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the dashed lines represent the critical values for instability given by
the previous approximate method in Ref. 14 for hinged, fixed beams,
and cantilevers. Indeed, the difference between the critical value for
instability with N� ¼ 5 and that with N� ¼ 4 is always less than
0.2% for hinged, fixed beams, or cantilevers. Because the critical value
for instability decreases monotonically with increasing the number
(N�) of microbeams considered in the substitute small array, the
present substitution method offers an accurate prediction in the criti-
cal value for instability of the large array when the number N�

increases.

5. INSTABILITY OF COMB-DRIVE MICROCANTILEVERS

Let us now use the simple substitution method to predict the criti-
cal value for instability of comb-drive microcantilevers, shown in
Figure 1d. Because in almost all practical examples of comb-drive
technology, such as those reported in Refs. 9–13, comb-drive micro-
cantilevers have the same material and geometrical characteristics,
we assume in this section that E1I1 ¼ E2I2 ¼ EI and L1 ¼ L2 ¼ L.

5.1. Estimate of the Critical Value with Y2 ¼ 0 (N� ¼ 2)

Let us first consider two opposing microcantilevers (N� ¼ 2) with the
second one fixed (Y2 ¼ 0). It follows from Equations (3–5) that the
deflection Y1ðx1Þ of the first cantilever is determined by

EI
d4Y1

dx4
1

¼ 0 for 0 � x1 < L� d;

EI
d4Y1

dx4
1

¼ C

ðd0 � Y1Þn
for L� d � x1 � L:

ð21Þ

With the Galerkin method, Y1ðx1Þ is expressed by the fundamental
modes of the cantilever as

Y1ðx1Þ ¼
Xm
i¼1

aiFiðx1Þ; ð22Þ

where

Fiðx1Þ ¼ sin bix1 � sinh bix1 � ciðcos bix1 � cosh bix1Þ; ð23Þ

and the values of biL and ci are shown in Equation (16).
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Multiplying Equation (21) by Fiðx1Þ (i ¼ 1, 2,. . ., m) and then inte-
grating over x1 ¼ [0, L], one can obtain m equations with m unknown
coefficients ai (i ¼ 1, 2,. . ., m). The critical values of A0=EIðp=LÞ4 given
by the present method when n ¼ 2 and N� ¼ 2 are shown in Figure 6
with respect to the overlap depth d. It is seen from Figure 6 that the
critical value of A0=EIðp=LÞ4 predicted by the present method with
N� ¼ 2 is 0.0616 for d=L ¼ 0.2, 0.0379 for d=L ¼ 0.5, or 0.0346 for
d=L ¼ 0.8. In addition, the average distance change between the first
cantilever and its neighbor at the onset of instability is 0.323 d0 for
d=L ¼ 0.2, 0.273d0 for d=L ¼ 0.5, or 0.205d0 for d=L ¼ 0.8. On the
other hand, the critical values of the interaction coefficient for insta-
bility of the original array of comb-drive microcantilevers obtained

FIGURE 6 Critical value of the interaction coefficient for instability of a
small array of N� microcantilevers at the end of the original comb-drive micro-
cantilever array when n ¼ 2, as a function of the depth d=L when
E1I1 ¼ E2I2 ¼ EI, L1 ¼ L2 ¼ L, where the N�th microcantilever is assumed
to be fixed (YN� ¼ 0).
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in our previous work (see Figure 8 of Ref. 15) is also shown in Figure 6.
For example, the critical value in Figure 8 of Ref. 15 is 0.0389 for
d=L ¼ 0.2, or 0.0266 for d=L ¼ 0.5, or 0.03 for d=L ¼ 0.8. In addition,
Grade et al. [11] found that for the comb-drive microcantilevers under
electrostatic forces (n ¼ 2), the maximum deflection of the end beams
at the onset of instability is about 0.25d0. Thus, the present method
(N� ¼ 2) leads to relative errors in the critical value of interaction coef-
ficient for instability around 58% for d=L ¼ 0.2, 42% for d=L ¼ 0.5, or
15% for d=L ¼ 0.8. The average relative error in the distance change
between the first cantilever and its neighbor at the onset of instability
is 19% for d=L ¼ 0.2, 0.5, or 0.8. Obviously, for the large comb-drive
microcantilever array, considering only two cantilevers at its ends
leads to substantial errors.

5.2. Estimate of the Critical Value with Y3 ¼ 0 (N� ¼ 3)

Next, let us consider three cantilevers (N ¼ 3) with the third one fixed
(Y3 ¼ 0). It follows from Equations, (3–5) that the deflections of the
end beam and its neighbor are determined by

EI
d4Y1

dx4
1

¼ 0 for 0 � x1 < L� d;

EI
d4Y1

dx4
1

¼ C

ðd0 þ Y2 � Y1Þn
for L� d � x1 � L;

ð24aÞ

EI
d4Y2

dx4
2

¼ 0 for 0 � x2 < L� d;

EI
d4Y2

dx4
2

¼ C

ðd0 � Y2Þn
þ �C

ðd0 þ Y2 � Y1Þn
for L� d � x2 � L:

ð24bÞ

With Galerkin’s method, Y1ðx1Þ and Y2ðx2Þ can be expressed by

Y1ðx1Þ ¼
Xm
i¼1

aiFiðx1Þ; Y2ðx2Þ ¼
Xm
i¼1

biGiðx2Þ; ð25Þ

where

Giðx2Þ ¼ sin cix2 � sinh cix2 � ciðcos rix2 � cosh cix2Þ ð26Þ
and

c1L ¼ 1:875; c2L ¼ 4:694; c3L ¼ 7:855; c4L ¼ 10:996;

c5L ¼ 14:137; . . . :
ð27Þ
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To solve Equation (24), one should change the variable x2 in Equation
(24a) into x1 and change the variable x1 in (24b) into x2, using
x1 þ x2 ¼ 2L� d. By multiplying Equation (24a) by Fiðx1Þ (i ¼ 1, 2,. . .,
m) and then integrating over x1 ¼ ½0;L� and multiplying Equation
(24b) by Giðx2Þ (i ¼ 1, 2,. . ., m) and then integrating over x2 ¼ ½0;L�,
one will obtain 2m equations with 2m unknown coefficients ai and bi

(i ¼ 1, 2,. . ., m). The critical values of A0=EIðp=LÞ4 given by the present
method when n ¼ 2 and N� ¼ 3 are shown in Figure 6, as a function of
the overlap depth d. It is seen from Figure 6 that this curve predicted
by the present method with N� ¼ 3 is close to the curve of Figure 8 of
Ref. 15. With the present method (N� ¼ 3), the critical value of
A0=EIðp=LÞ4 for instability is 0.039 for d=L ¼ 0.2, 0.0266 for d=L ¼ 0.5,
0.5, or 0.03 for d=L ¼ 0.8. In addition, the average distance change
between the first cantilever and its neighbor at the onset of instability
is 0.256d0 for d=L ¼ 0.2, 0.249d0 for d=L ¼ 0.5, or 0.242d0 for d=L ¼
0.8. Thus, for d=L ¼ 0.2, or 0.5, or 0.8, the relative error in the critical

value of interaction coefficient for instability is less than 0.3%, and
the relative error in the average distance change between the first
cantilever and its neighbor at the onset of instability is less than
3.2%. Therefore, for the large comb-drive microcantilever array, con-
sidering only three microcantilevers (N�¼ 3) at its ends of the large
array gives a good estimate of the critical value for instability and
the distance change between the first cantilever and its neighbor
at the onset of instability, with reasonably small relative errors.

5.3. Estimate of the Critical Value with Y4 ¼ 0 (N� ¼ 4)

Further, if four cantilevers (N�¼ 4) are considered with the fourth one
fixed (Y4 ¼ 0), the deflections of the first, second, and third beams are
determined by

EI
d4Y1

dx4
1

¼ 0 for 0 � x1 < L� d;

EI
d4Y1

dx4
1

¼ C

ðd0 þ Y2 � Y1Þn
for L� d � x1 � L;

ð28aÞ

EI
d4Y2

dx4
2

¼ 0 for 0 � x2 < L� d;

EI
d4Y2

dx4
2

¼ C

ðd0 þ Y3 � Y2Þn
þ �C

ðd0 þ Y2 � Y1Þn
for L� d � x2 � L;

ð28bÞ
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EI
d4Y3

dx4
1

¼ 0 for 0 � x1 < L� d;

EI
d4Y3

dx4
1

¼ C

ðd0 � Y3Þn
þ �C

ðd0 þ Y3 � Y2Þn
for L� d � x1 � L;

ð28cÞ

where Y1ðx1Þ, Y2ðx2Þ and Y3ðx1Þ can be expressed by

Y1ðx1Þ ¼
Xm
i¼1

aiFiðx1Þ;Y2ðx2Þ ¼
Xm
i¼1

biGiðx2Þ;Y3ðx1Þ ¼
Xm
i¼1

ciFiðx1Þ ð29Þ

With the Galerkin method, the critical values of A0=EIðp=LÞ4 given by
the present method when n ¼ 2 and N� ¼ 4 are shown in Figure 6 with
respect to the overlap depth d. It is seen from Figure 6 that this curve
is also close to the curve of Figure 8 of Ref. 15. With the present
method (N� ¼ 4), the critical value of A0=EIðp=LÞ4 for instability is
0.0385 for d=L ¼ 0.2, or 0.0263 for d=L ¼ 0.5, or 0.0298 for d=L ¼ 0.8.
In addition, the average distance change between the first cantilever
and its neighbor at the onset of instability is 0.253d0 for d=L ¼ 0.2,
0.247d0 for d=L ¼ 0.5, or 0.236d0 for d=L ¼ 0.8. Thus, compared to
the results of Figure 8 of Ref. 15 for d=L ¼ 0.2, 0.5, or 0.8, the relative
error in the critical value for instability is less than 1.1%, and the rela-
tive error in the average distance change between the first cantilever
and its neighbor at the onset of instability is less than 5.6%.

Furthermore, the critical values of A0=EIðp=LÞ4 for N�¼ 5 are also
shown in Figure 6, which are very close to those for N�¼ 4. For
example, with the present method (N�¼ 5), the critical value of
A0=EIðp=LÞ4 is 0.0384 for d=L ¼ 0.2 (0.3% less than that for N�¼ 4),
0.0263 for d=L ¼ 0.5 (almost identical to that for N�¼ 4), or 0.0298
for d=L ¼ 0.8 (almost identical to that for N�¼ 4). In addition, the
average distance change between the first microcantilever and its
neighbor at the onset of instability is 0.246d0 for d=L ¼ 0.2, 0.252d0

for d=L ¼ 0.5, or 0.238d0 for d=L ¼ 0.8. Thus, compared with the
results of Figure 8 of Ref. 15 for d=L ¼ 0.2, 0.5, or 0.8, the relative error
in the critical value for instability is less than 1.3%, and the relative
error in the average distance change between the first cantilever
and its neighbor at the onset of instability is less than 4.8%.

To demonstrate the dependence of the predicted critical value on
the number N�, the critical values of A0=EIðp=LÞ4 given by the present
method for d=L ¼ 0.2, 0.5, or 0.8 are shown in Figure 7, as a function of
the number N�, where the dashed lines represent the corresponding
critical values in the Figure 8 of Ref. 15. Here, it should be pointed
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out that the critical values for instability given by the previous method
in Ref. 15 are approximate in nature and cannot be used as the exact
critical values. This can explain why the relative errors with N�¼ 4
are even larger than the relative errors with N�¼ 3. In fact, it is
expected that the results given by the present substitution method
quickly converge to the exact values when the number N� increases.

These results shown in Sections 4 and 5 show that the substitution
method suggested here offers an alternative design criterion for struc-
tural stability of large arrays of microbeams, which is simpler than the
procedure developed previously [14,15] and could be more easily
applied to practical problems in MEMS. For example, when the inter-
action law F ¼ c=dn or f ¼ C=dn (see Section 2) is given, the results

FIGURE 7 Critical value of the interaction coefficient for instability of a
small array of N� microcantilevers at the end of the original large comb-drive
microcantilever array when d=L ¼ 0.2, 0.5, or 0.8 and n ¼ 2, where the N�th
microcantilever is assumed to be fixed (YN� ¼ 0).
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shown in Figures 5 and 7 give a critical separation d0 below which the
instability occurs. On the other hand, when the separation d0 is fixed,
the results shown in Figures 5 and 7 determine a critical value for the
constant C determined by, for example, the Hamaker constant of the
van der Waals forces or the applied electrical voltage for electrostatic
forces, beyond which the instability occurs. Although vibration of a
coupled array of microbeams has been recently studied [19,20] using
a spring model with linearized interaction, structural instability of a
large and nonlinearly coupled microbeam array and the associated
end phenomena have not been studied in the literature at all.

In concluding our discussion, it should be stated that the present
article is subject to a few limitations. First, the beam–beam interaction
is restricted to only a single type of attractive forces (n ¼ 2, 3, or 4)
between the nearest adjacent beams; possible repulsive interaction
(for example, between similarly charged adjacent microbeams) and
combined interaction of more than one type of surface forces are not
considered. Second, the so-called fringing field effect of electrostatic
interaction has been neglected based on the present assumption that
the gap between adjacent beams is small compared with other dimen-
sions of the microbeams. We believe that the methods developed here
can be extended to most of the more general cases without essential
technical difficulties, although the extension to some cases would
require a more complicated analysis. Also, the present substitution
method is developed only for static instability of large coupled
microbeam arrays but is not necessarily applicable to their nonlinear
dynamics. To what degree the present ideas and methods can be
extended to nonlinear dynamics of large coupled microbeam arrays
requires a detailed separate study, which constitutes one interesting
subject for future work.

Finally, the method suggested here is applicable not only to mutually
attracting microbeams but also to nanobeams [21,22]. For instance, it
has been well established that attractive van der Waals interactions
between parallel carbon nanotubes often become the single dominant
force in their mechanical deformation, and mechanical behavior of
carbon nanotubes, as the most promising building blocks of future
NEMS (nanoelectromechanical systems), can be well described by
elastic beam models [23–27].

6. CONCLUSIONS

A simple substitution method is suggested to study structural insta-
bility of a large array of mutually attracting microbeams, based on
instability analysis of a small array of only a few microbeams at the
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ends of the original large array with its innermost microbeam fixed.
An exact analysis of the N-spring system confirms the accuracy of this
simple substitution method. Further, this simple method is used to
study instability of a large array of identical microbeams and comb-
drive microcantilevers. Our results show that the present substitution
method can predict the critical value for instability of the original
large array of microbeams with reasonable relative errors (typically
less than 5%), even when a small array of only four or five microbeams
at the ends of the original large array are considered. In addition, the
present method also predicts the distance change between the end
microbeam and its neighbor at the onset of instability for the original
large array. This simple substitution method reveals an essential
feature of the instability of a large coupled microbeam array initialized
at its two ends and offers a useful approximate criterion for structural
instability of a large parallel array of mutually attracting microbeams
or nanobeams in MEMS or NEMS.
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